term : 2022.05.10 ~ 2022.05.13
flow
- 객체 인식
- data labeling
- labelImg
- yolov3 training
- augmentation
- use pretrained darknet weights
- choose optimizer and loss method (SGD/Adam , bcelogloss/mseloss/cross entropy loss)
- optimize hyperparamter (lr, loss weight)
- convert yolov3 → darknet’s weights file
- convert darknet’s weights → onnx file
- onnx file → tensorRT file
- data labeling
- 차선 인식
- utilize detected object
- houghline transform
- path planning
- cte ( between detected lane mid position and mid position of image (320 pixel) )
아쉬웠던 점들
path planning
- Pure Pursuit + PID
- Rear-Wheel Feedback + PID
- Front-Wheel Feedback / Stanley + PID
- LQR + PID
- Linear MPC
- https://github.com/zhm-real/MotionPlanning