Home pytorch Ensemble
Post
Cancel

pytorch Ensemble

Ensemble

  1. 앙상블 학습이란?

앙상블 학습(ensemble learning)은 여러 개의 분류기를 생성하고, 그 예측을 결합하는 것이다.

강력한 하나의 모델을 사용하는 대신 약한 모델 여러 개를 조합하여 정확한 예측할 수 있다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch.nn as nn
import torch

class MyEnsemble(nn.Module):
  def __init__(self, modelA, modelB, modelC, output):
    super(MyEnsemble, self).__init__()
    self.modelA = modelA
    self.modelB = modelB
    self.modelC = modelC
    
    self.fc1 = nn.Linear(num_classes, output)

  def forward(self,x):
    out1 = self.modelA(x)
    out2 = self.modelB(x)
    out3 = self.modelC(x)

    out = out1 + out2 + out3
    x = torch.softmax(x, dim=1)
    return x

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

import torchvision.models as models

densenet161 = models.densenet161(pretrained=True).to(device)
resnet101 = models.resnet101(pretrained=True).to(device)
googlenet = models.googlenet(pretrained=True).to(device)

densenet161.classifier = nn.Linear(in_features=densenet161.classifier.in_features, out_features=num_classes)
resnet101.fc = nn.Linear(in_features=resnet101.fc.in_features, out_features=num_classes)
googlenet.fc = nn.Linear(in_features=googlenet.fc.in_features, out_features=num_classes)

densenet161 = densenet161.to(device)
resnet101 = resnet101.to(device)
googlenet = googlenet.to(device)



densenet161, history, best_epoch = train_and_val(densenet161, criterion, optimizer, dataloader['train'], dataloader['valid'], 2)
densenet = [densenet161, history, best_epoch]
resnet101, history, best_epoch = train_and_val(resnet101, criterion, optimizer, dataloader['train'], dataloader['valid'], 2)
resnet = [resnet101, history, best_epoch]
googlenet, history, best_epoch = train_and_val(googlenet, criterion, optimizer, dataloader['train'], dataloader['valid'], 2)
googlenet = [googlenet, history, best_epoch]

ensemble = MyEnsemble(densenet[1], resnet[1], googlenet[1], 10)


Reference

This post is licensed under CC BY 4.0 by the author.